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Abstract
We apply the deautonomization procedure to mappings obtained by one-
dimensional reductions of the Q4 and Q3 integrable lattice systems of Adler,
Bobenko and Suris. We show that in the case of the Q4 mapping the non-
autonomous forms are elliptic discrete Painlevé equations while for Q3 the
deautonomization leads to linearizable systems.

PACS numbers: 02.30.Ik, 05.45.Ra, 05.45.Yv
Mathematics Subject Classification: 39A12, 37J35, 37J15

1. Introduction

The deautonomization of integrable autonomous systems, with the help of some integrability
criterion, is probably the easiest method for the construction of their non-autonomous
counterparts. In the domain of discrete Painlevé equations this is the method used par
excellence. The starting point usually is some mapping belonging to the QRT family [1].
The rationale behind this choice is that the QRT mappings are the discrete analogues of the
equations defining elliptic functions. As a matter of fact, as shown by the proponents of the
mapping (see also [2]), for the ‘symmetric’ form of the mapping and in [3] for the ‘asymmetric’
one, the solution of the QRT mapping is just a sampling of an elliptic function. Thus, just
as the continuous Painlevé transcendents constitute an extension of the elliptic functions to
the non-autonomous domain, one expects that the deautonomization of the discrete equations
defining elliptic functions will lead to discrete Painlevé equations.

The basic tool for the deautonomization procedure is an integrability criterion, which
allows the selection of the integrable case among all the possible ones. In the discrete domain
a most convenient approach is the one based on the singularity confinement [5] property. An
advantage of the singularity confinement approach over another popular discrete integrability
detector, based on the computation of the algebraic entropy [6], lies in the fact that in the
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former approach one can study the singularities one at a time. This is not always possible
in the algebraic entropy approach. On the other hand the latter is most useful when one
investigates the precise type of integrability and in particular the possibility that the system be
linearizable [7]. A critique, sometimes formulated, based on the non-sufficient character of
the singularity confinement criterion is inapplicable in the case of deautonomization. Indeed
the non-sufficient character of singularity confinement comes from the fact that the local
singularity structure of the solutions of a mapping does not suffice in order to guarantee
integrability: the growth of the solutions at infinity does play a crucial role as well. However
in the case of the deautonomization of integrable mappings, the nice behaviour, i.e. slow
growth, of solutions at infinity is guaranteed by the integrable character of the autonomous
system. Thus the singularity confinement approach, can be, and has extensively been, applied
to the derivation of integrable non-autonomous systems. Foremost among them are the discrete
Painlevé equations.

While the deautonomization procedure was traditionally limited to applications based on
the QRT mapping, it appeared recently that it is possible to extend this approach to mappings
which do not belong to the QRT family. In particular, in [8], we showed that mappings of the
Hirota–Kimura–Yahagi (HKY) [9] type do possess non-autonomous forms. The latter were
obtained by a combination of the singularity confinement and algebraic entropy approaches,
in particular since many integrable instances of these mappings are linearizable.

Emboldened by the success of our approach to the deautonomization of non-QRT
mappings we decided to apply it to another promising case, that of mappings obtained from the
reduction of the Q4 and Q3 systems of Adler, Bobenko and Suris (ABS) [10]. This reduction
was obtained by two of the present authors (AR and BG), in collaboration with N Joshi and
T Tamizhmani [11]. As we showed in that publication, the autonomous mappings obtained
were of HKY rather than QRT type. In what follows we shall present their non-autonomous
forms. In particular we shall show that the deautonomization of the Q4 mapping leads to
elliptic discrete Painlevé equations while that of Q3 produces linearizable systems.

2. Derivation of the Q4 and Q3 mappings

In [10] Adler, Bobenko and Suris have obtained a family of integrable lattice equations. The
one dubbed Q4 is the most general, in the sense that the remaining ones can be obtained as
special limits from it. Its form is most conveniently given in the parametrization initially
proposed by Hietarinta involving elliptic sines:

sn α(xn,mxn+1,m+1 + xn,m+1xn+1,m) − sn β(xn,mxn+1,m + xn,m+1xn+1,m+1)

− sn(α − β)(xn,mxn,m+1 + xn+1,mxn+1,m+1)

+ sn α sn β sn(α − β)(1 + k2xn,mxn,m+1xn+1,mxn+1,m+1) = 0. (2.1)

When one takes k = 0 the elliptic sines become circular ones and Q4 goes over to an equation
called Q3 in the ABS classification. In the Hietarinta parametrization it has the form

sin α(xn,mxn+1,m+1 + xn,m+1xn+1,m) − sin β(xn,mxn+1,m + xn,m+1xn+1,m+1)

− sin(α − β)(xn,mxn,m+1 + xn+1,mxn+1,m+1) + sin α sin β sin(α − β) = 0. (2.2)

In order to obtain the one-dimensional reduction of Q4 we introduced the constraint
xn,m+1 = xn+1,m. This resulted in the following second-order mapping.

(sn α − sn β)xn(xn+1 + xn−1) − sn(α − β)
(
xn+1xn−1 + x2

n

)
+ sn α sn β sn(α − β)

(
1 + k2x2

nxn+1xn−1
) = 0, (2.3)

2
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where, in view of the deautonomization, the α, β should be understood as the ‘one-dimensional
reductions’ of the α, β of equation (2.1).

Similarly the reduction of Q3 becomes

(sin α − sin β)xn(xn+1 + xn−1) − sin(α − β)
(
xn+1xn−1 + x2

n

)
+ sin α sin β sin(α − β) = 0

(2.4)

In [11] we showed that both mappings (2.3) and (2.4) are not of QRT but rather of HKY type.
Indeed their invariants are K = K2 where K is a QRT-type invariant, namely a ratio of two
expressions quadratic in xn and xn+1.

Moreover the mapping (2.4) is not just integrable but as a matter of fact linearizable. As
shown in [11] it suffices to subtract (2.4) from its upshift and reduce the order of the remaining
homogeneous mapping by introducing the auxiliary variable yn = xn+1/xn. The mapping thus
obtained was

yn+1 = a + yn − yn−1
(
y2

n − 1
)

yn−1yn(ayn + 1)
, (2.5)

where

a = − cos α+β

2

cos α−β

2

.

As explained in [11], (2.5) is a Gambier-type mapping [12], which can generically be written
as two homographic mappings in cascade. As a matter of fact the solution of (2.4) is even
simpler than what one could infer from its relation to a Gambier system. A straightforward
calculation shows that the general solution of (2.4) is

xn = h cos(pn + q(−1)n + r), (2.6)

where q and r are free parameters while q and h are given by

cos α+β

2

cos 2q
= cos α−β

2

cos p
= h. (2.7)

The mappings (2.3) and (2.4) were not the only ones obtained in [11]. Since the invariants
of the mappings were the squares of some QRT invariant it was natural to wonder what are
the QRT mappings associated with the latter. In the case of (2.3) we found thus the mapping

sn α sn β sn(α − β)(sn α − sn β)(xn+1 + xn−1)
(
k2x4

n − 1
)

+ S+xn

(
xn+1xn−1 − x2

n

)
+ S−sn α sn βxn

(
k2xn+1xn−1x

2
n − 1

) = 0, (2.8)

where S± = sn2(α − β)(k2 sn2α sn2β − 1) ± (sn α − sn β)2. Similarly in the case of Q3 we
obtained a mapping which, after a scaling of the dependent variable, was written as

(yn+1yn − 1)(ynyn−1 − 1) = y4
n + (a + 1/a)y2

n + 1 (2.9)

which is an autonomous limit of the q-Painlevé V equation. As expected, given its relation to
(2.4), this mapping is linearizable.

3. Deautonomization of the Q4 and Q3 mappings

Having summarized the derivation of the mappings obtained by the reduction of the integrable
lattices Q3 and Q4 we can now embark upon their deautonomization. We start from the
mapping (2.4) which we rewrite, with some hindsight, in a slightly simplified way as

cos γ (xn+1 + xn−1)xn − cos z
(
xn+1xn−1 + x2

n

)
+ (cos2 z − cos2 γ ) cos z = 0, (3.1)

3
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where we have taken α = γ + z and β = γ − z. We shall investigate the integrability of a
non-autonomous form of (3.1) using the singularity confinement criterion. We ask when xn+1

is independent of the value of xn−1. We find readily that this happens whenever xn = ±cos z,
which leads to xn+1 = ±cos γ . Iterating (3.1) we find that xn+2 = ±cos z whereupon xn+3

recovers the lost degree of freedom.
At this point a remark is in order. Our empirical finding [13] is that the mappings of HKY

type have a singularity structure different from that of the QRT mappings. As explained in [14]
the generic singularity structure of a QRT mapping is one of the paired singularities: one enters
the singularity through some value and exits it through some other one. A typical example is
that of d-PII where the singularity structure is {±1, 0,∓1}. On the other hand in the case of
HKY mappings one enters the singularity through some value and exits it through the same
one. As we just saw in the case of (3.1) the singularity structure is {±cos z,±cos γ,±cos z}.
Whether this singularity structure is indeed a signature of HKY mappings, and what, if any,
in its deep meaning are questions which are open at this stage.

Next we ask what is the possible dependence of z and γ on the independent variable. We
start by assuming that both γ and z depend on n which leads to the immediate conclusion
that if we enter the singularity through xn = ±cos zn we must exit it by xn+2 = ±cos zn+2.
Moreover we have xn+1 = ±cos γn but the condition for xn+3 to recover the lost degree of
freedom is xn+1 = ±cos γn+2. Thus we must have γn = γn+2, which means that γ is constant
up to an even–odd parity, i.e. γ2n = γe, γ2n+1 = γo. One still must check that these values are
consistent with the equation around xn+1. We put Yn = cos zn and obtain

(Yn+1Yn − cos γe cos γo)(Yn−1Yn − cos γe cos γo)

= Y 4
n − (cos2 γe + cos2 γo)Y

2
n + cos2 γe cos2 γo. (3.2)

Equation (3.2) is just equation (2.9) up to a scaling and the appropriate definition of a. As
explained in [11] its general solution is Yn = p cos(qn + ω). One can absorb p into the
scaling of x (at the price of redefining γe and γo). Substituting the general solution into (3.2)
with p = 1 we find that q = γe + γo. Thus we have Yn = cos(n(γe + γo) + ω), which
means that zn = n(γe + γo) + ω. With these values of γ and z we can check that indeed the
singularity is confined. Given the fact that the independent variable enters the equation through
an exponential, one could conclude that the non-autonomous form of (3.1) is a q-Painlevé
equation. However this is not the case: equation (3.1) is of much simpler nature. In order
to show this we analyse the equation with the tools of algebraic entropy. Starting from a
initial condition we obtain the successive iterates and compute the homogeneous degree of
the numerator and denominator of the iterates. We find the following succession of degrees:
0, 1, 2, 4, 6, 8, 10, . . . , i.e. a linear growth. Thus according to our results in [7] we expect the
non-autonomous form of (3.1) to be linearizable (which was also the case for the autonomous
form). The linearization of the deautonomized (3.1) will be presented in the next section.

As an interesting aside we can present here a limit of (3.1) where the coefficients are
polynomial in n, instead of trigonometric. (Had (3.1) been a q-Painlevé equation, this limit
would have been its difference counterpart, but in the present situation we have rather another
linearizable system.). We start by taking ω = −π/2− εn0, γe,o = ∓π/2 + εδe,o and introduce
a new dependent variable X by xn = εXn. Taking the limit ε → 0 we find the equation

(−1)nδn(Xn+1 + Xn−1)Xn − Zn

(
Xn+1Xn−1 + X2

n

)
+ Zn

(
Z2

n − δ2
n

) = 0, (3.3)

where Zn = (n − n0)(δe + δo).
Next we turn to the mapping (2.3) which we rewrite as

cn γ dn γ (1 − k2 sn4z)xn(xn+1 + xn−1) − cn z dn z(1 − k2 sn2z sn2γ )
(
xn+1xn−1 + x2

n

)
+ (cn2z − cn2γ ) cn z dn z

(
1 + k2x2

nxn+1xn−1
) = 0, (3.4)

4
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where again we have taken α = γ + z and β = γ − z. We use the singularity confinement
criterion and ask under which condition xn+1 is independent of the value of xn−1. We find that
this may happen when x is either xn = ±cn z/dn z or xn = ±dn z/(k cn z). In this case we
have xn+1 = ±cn γ /dn γ and xn+1 = ±dn γ /(k cnγ ), respectively. One more iteration leads
to xn+2 taking precisely the value of xn and xn+3 recovers the lost information.

The deautonomization of (3.4) follows closely that of the (3.1) case. We enter the
singularity through xn = ±cn zn/dn zn and exit it by xn+2 = ±cn zn+2/dn zn+2, and similarly
for xn = ±dn zn/(k cn zn). Moreover we have xn+1 = ±cn γn/dn γn and again the condition
for xn+3 to recover the lost degree of freedom is xn+1 = ±cn γn+2/dn γn+2. We conclude
again that we must have γn = γn+2, leading to a constant γ , up to an even–odd parity,
i.e. γ = γe,o. We turn now to the consistency equation around xn+1. We introduce
the variable Yn which is equal to either Yn = ±cn zn/dn zn ≡ ±cd zn = sn(zn ± K) or
Yn = ±dn zn/(k cn zn) ≡ ±dc zn/k = sn(zn ± K + iK ′) where K, iK ′ are the two standard
quarter periods of the Jacobi elliptic functions. We find in all cases an equation, of the form

A(Yn+1 + Yn−1)
(
k2Y 4

n − 1
)

+ BYn

(
k2Y 2

n Yn+1Yn−1 − 1
)

+ CYn

(
Yn+1Yn−1 − Y 2

n

) = 0, (3.5)

where A,B,C are the same for all four singularities. Moreover γe and γo appear symmetrically
in (3.5) leading to exactly the same A,B,C for n even and odd. Thus (3.5) is a symmetric
QRT mapping of the exact form (2.8). From the results of [3] we know that the solution of
such a mapping is a homography of an elliptic sine. It turns out that for an equation of the
form (3.5), with generic A,B,C, the homography reduces to a mere multiplication and the
solution of (3.5) can be written as Yn = p sn(qn + ω; kp2). However here the A,B,C have
specific values, namely

A = cn γe cn γo dn γe dn γo

B = −(cn2γe dn2γo + cn2γo dn2γe)

C = k2 cn2γe cn2γo + dn2γe dn2γo.

Substituting the solution for Y we find that it is compatible with (3.5) and the precise values of
A,B,C, provided we take p = 1 and q = γe + γo. Thus the variable z is zn = n(γe + γo) + ω.
The choice p = 1 does not lead to a loss of generality. Indeed though the form (3.4) with
given γo, γe seems to fix k, it is not really so. By an appropriate rescaling of x, which implies a
corresponding rescaling of the parameter k of the Jacobi elliptic functions, it is always possible
to find new values of γo, γe so that one can rewrite (3.4) with any value of k.

As a further test of integrability we have computed the degree growth of the iterates of
(3.4). We found the following sequence of degrees: 0, 1, 2, 5, 8, 13, 18, 25, . . . . We have
thus a quadratic degree growth which is compatible with the integrable character of (3.4) but
which shows that (3.4) is not linearizable. Equation (3.4) is in fact an perfect example of an
elliptic discrete Painlevé equation [15]. As a matter of fact this is the first instance (to the
authors’ knowledge, of course) that an elliptic Painlevé equation is derived as a reduction of
an integrable lattice equation.

4. Integration of the linearizable mapping

As explained in the previous section, equation (3.1) and its limit (3.3) are expected to be
linearizable, just as was the case for the autonomous reduction (2.4). It is thus natural that
we seek their linearization. However before embarking upon these calculations we feel that
some generalization of (3.1) is mandatory. It is indeed our experience that when a mapping is
linearizable its coefficients can be expressed in terms of some completely arbitrary functions
[16]. This is indeed the case for projective mappings as well as for the Gambier one. It turns

5
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out that the form of (3.1) cannot accommodate a free function. However it is possible to
generalize it slightly and still preserve linearizability. We are thus going to work with the
mapping

axn+1xn−1 + b(xn+1 + xn−1)xn + cx2
n = 1, (4.1)

i.e. a form similar to that of (3.1) but where the relative coefficient of the xn+1xn−1 and x2
n

terms is no longer 1. The parameters a, b, c are now functions of the independent variable.
We are not going to go into all the details of the derivation. It suffices to say that the

linearization can be obtained in terms of a Gambier mapping the form of which is inspired
by the one found in the case of (2.4). As already explained in [17] we subtract (4.1) from its
upshift (i.e., taking its discrete derivative) and reduce the order of the remaining homogeneous
mapping by introducing the auxiliary variable yn = xn+1/xn. We find the mapping

bn+1y
2
nyn+1yn−1 + cn+1y

2
nyn−1 + an+1ynyn+1yn−1

+ (bn+1 − bn)ynyn−1 − anyn − cnyn−1 − bn = 0. (4.2)

This mapping is again a Gambier one. Indeed it can be written as a system of two discrete
Riccatis in cascade

yn = α + zn(β + yn−1)

yn−1
(4.3a)

zn+1 = −δ − zn

γ + κzn

, (4.3b)

where α, β, γ, δ and κ are functions of the independent variable. In order to simplify the
presentation of the results we introduce the (free) function gn = bn/an. A detailed calculation
shows that it is possible to express the parameters of the Gambier mapping as follows:

αn = gn−1

gn+1

βn = gn−1

γn = gn−1bn+1

bngn

κn = bn+1gngn−1

bngn+1

δn = gn+1

1 + gngn+1

(
gn + gn+2

gn+2
− bn

bn+1

gn+1 + gn−1

gn−1

)
.

Moreover the three functions a, b and c can be expressed in terms of the free function g. From
the definition of g we have

an = bn

gn

(4.4)

and moreover we find

cn = gn

bngn−1gn−2(gn+1 + gn−1) + bn−1gn+1(1 − gn−1gn−2)

gn+1gn−1gn−2(1 + gngn−1)
(4.5)

while b is given by the linear equation

bn+1gn−1gn−2(gn−1gn + 1)(gn+1gn+2 − 1) + bngn−2gn+2
(
g2

n−1 − g2
n+1

)
+ bn−1gn+1gn+2(gn+1gn + 1)(1 − gn−1gn−2) = 0. (4.6)

Thus equation (4.1) is linearizable and as expected its general nonautonomous form does
involve a free function.

6
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Before concluding this section it would be interesting, as an aside, to consider the
degeneration of the mapping (4.1). As already shown by Adler, Bobenko and Suris, the
integrable lattice Q3 does, under the appropriate limiting procedure, degenerate to the lattice
these authors of have dubbed Q2. In [11] we have presented its reduced form

(xn+1 − xn)(xn − xn−1) + α(xn+1 + 2xn + xn−1) + β = 0 (4.7)

and have shown that it is linearizable in the same way as the mapping obtained from the
reduction of Q3. It would be interesting to present here its deautonomization. For the
linearization of the autonomous form of (4.7) we had started by subtracting it from its
upshift and reducing the order of the remaining mapping by introducing the auxiliary variable
yn = xn+1 − xn. Here we start by consider the Gambier mapping:

yn = yn−1zn + gn(zn + 1) (4.8a)

zn+1zn = fn

fn+1
. (4.8b)

Eliminating z and introducing the variable x we obtain a mapping which can be written as
fn+1Mn+1 − fnMn, where Mn = 0 defines a mapping which is the nonautonomous form of
(4.7). We find that f can be explicitly given in terms of the free function g:

fn = κgn + 2k(−1)n

(gn + gn−1)(gn + gn+1)
, (4.9)

where κ and k are two arbitrary constants. The mapping M has now the form

(xn+1 − xn)(xn − xn−1) + xn+1gn−1 + xn(gn − gn+1 + γn(gn + gn−1)) + xn−1gn+1 + βn = 0,

(4.10)

where γn = (κgn+1 − 2k(−1)n)/(κgn + 2k(−1)n), βn = −gn−1gn+1 + (c + k(−1)n)/fn and c
is another free constant. It is clear from the expression of (4.9) that this nonautonomous form
could not have been obtained by simply allowing the parameters α and β in (4.7) to depend
on n.

5. Conclusion

In this paper we have examined two (in fact, three) mappings we have obtained in some
previous work as reductions of the Q integrable lattice systems of Adler, Bobenko and Suris.
As shown in [11] those mappings were not of QRT type and the conclusion we had drawn
there was that there appeared to be no obvious way to extend them to non-autonomous forms.
The present work aimed at remedying this.

The approach we adopted in the present paper was that of deautonomization, based on the
singularity confinement criterion, complemented by the computation of the algebraic entropy.
The key element was, in the case of the Q4 and Q3 mappings, the adequate parametrization
which allowed the identification of the singular values of the dependent variable. This led
to a non-autonomous form for the Q4 mapping where the independent variable appeared in
the argument of elliptic functions. While this is not the first example of an elliptic discrete
Painlevé equation, it is the first time that such an elliptic integrable system is obtained from
the reduction of an integrable lattice equation. This is also, by far, the simplest form of an
elliptic discrete Painlevé equation ever found.

The case of Q2 mapping was more challenging: its non-autonomous form was obtained
from the appropriate limit of the (non-autonomous form of the) Q3 mapping. In this case the

7
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straightforward deautonomization, i.e. allowing the parameters of the mapping to depend on
the independent variable, would not have given the desired result. This should be an indication
for future deautonomization investigations: in some cases one must extend the autonomous
form, introducing a priori superfluous parameters, in order to ensure a parametrization rich
enough, to be amenable to deautonomization.
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